混凝土重力坝振动参数识别研究 注意:本论文已在《水力发电》
2001,(2)17-19.发表 王登刚,
刘迎曦,李守巨 (大连理工大学 工程力学系,辽宁
大连,116024) 摘 要:本文基于最优控制解的理论,建立了引入先验约束条件的混凝土重力坝动态参数识别模型,提出了求解该模型的约束变尺度方法。以某大坝空库情形为例,在振动观测数据不完全的条件下,对本文所提出的动态材料参数识别方法进行考察。识别结果表明,本文方法不仅具有较高的计算精度和良好的数值稳定性,并且具有一定的抑制数据噪音的能力。在只有一阶圆频率和几个固定点处有一阶振型观测数据的情况下,可以可靠地识别出坝体混凝土和基础岩石的动弹性模量。从而为识别混凝土坝体和岩石基础弹性常数提供了一条新的有效途径。 关键词:振动参数;参数识别;混凝土重力坝;约束变尺度方法 分类号:TU311.3,O391.引言 坝体混凝土材料物性参数,是大坝安全监测和大坝抗震数值模拟中不可缺少的重要数据。它对于大坝安全可靠性评定以及维护和加固有着重要作用。近年来,采用反演方法来确定坝体宏观等效物性参数的方法受到人们的重视[1-4]。但是已有研究大多是利用坝体已有静态观测位移来确定坝体参数,而本文则从振动参数识别的角度,根据大坝模态观测数据来识别坝体和岩石基础动弹性参数。目前,利用脉动法测量结构固有频率、阻尼和振型的技术日渐成熟[5],很多砼重力坝(如丰满水坝[6])曾经采用该方法进行了原型实验,测定了坝体的主频和布置在坝顶和基础上观测点的振幅值。充分利用这些宝贵的实测资料,根据这些抗震实验数据来识别坝体与基础的动弹性常数,对坝体抗震特性分析有重要的实际应用和参考价值。但是,利用动力测试数据识别结构动态参数的研究较多[7-9],但是在大坝中的应用研究还鲜有报道。大坝抗震实验数据是很有限的,利用有限的,甚至是不完全的动力测试信息识别结构参数仍然是结构参数识别的重要课题。 基于固有频率和振型观测数据,考虑先验信息,本文建立适于一般结构振动参数识别的计算模型模型,并给出了约束变尺度方法求解该模型的计算步骤。实际算例利用某混凝土坝的第一阶固有频率和三个振型观测数据,识别混凝土坝体和岩石基础动弹性模量,结果说明采用本文求解方法,利用有限抗震实验数据识别坝体和基础的动弹性模量是可行有效的。 2.振动参数识别模型的建立 2.1
混凝土坝振动参数识别的一般理论 结构-基础-库水体系的固有频率和固有振型,采用有限元法由特征方程(1)决定
式中:
参数识别的目的是确定包含于
2.2 振动参数识别的计算模型
考虑到观测数据噪音的客观存在,这里采用最优控制解[11]的概念定义问题的解,即待求变量
式中:
由参数的实际物理意义以及地质勘探资料等先验信息,可给出待求参数的限制范围,
从而,振动参数识别问题的计算模型可以表述为 min
3.振动参数识别模型的求解方法 3.1
约束变尺度方法
计算模型式(4)是一个约束非线性规划问题,本文采用约束变尺度方法求解。约束变尺度方法具有收敛快、可靠性好、适应能力强等优点,具有良好的收敛性能[12-13],其基本思想是迭代和逼近。一般地,对于非线性规划问题式(5),首先将其转化为一系列二次规划子问题式(6),式(5)中
min
min
在约束变尺度方法中利用了函数的二阶导数信息,但一般并不直接计算二阶导数,而采用变尺度法公式(7)近似构造Hesse矩阵
为了确保尺度矩阵序列
3.2 振动参数识别模型求解步骤
与一般非线性规划问题不同的是,模型(4)中等式约束为结构特征方程,它与特征值正问题相对应,对于某一参数
本文采用的求解振动参数识别问题的约束变尺度方法主要计算步骤如下: (1).给定初值
(2).求解特征方程,计算得到
(3)计算函数值与梯度值
(4).求解二次规划子问题,并确定新的Lagrange乘子向量
(5).利用监控技术确定步长因子
(6).收敛判断:若
(7).采用公式(7)~(9)更新Hesse矩阵的逆矩阵近似值
(8).令k=k+1,转向(2)。 4.算例 考虑到实际工程中所能得到的大坝原型观测数据是有限的,甚至只有大坝主频及极少特征点处的一阶模态值,如坝顶测点①的水平方向、基础测点②的水平和垂直方向模态信息,这里主要考察在这种观测信息不完全的情况下,由这四个观测数据值来确定坝体混凝土和基础岩石的弹性模量Ec和Er的可行性。 图1所示混凝土重力坝,坝体混凝土密度ρc=2.4×103kg/m3,泊松比μc=0.2,基础岩石泊松比μr=0.17。有限元计算时取岩石基础宽360.0m,高200.0 m,用8节点平面等参元。设弹性模量Ec=30.0GPa,Er=65.0Gpa,在大坝空库情形下进行正分析计算出结构固有频率和振型,把它们施加适量噪音来模拟实测固有频率和振型,再用本文方法识别坝体混凝土和基础岩石弹性模量,将识别结果与事先给定的值进行比较。观测数据相对误差为0%、1%、2%、5%时采用本文方法的计算结果如表1示,观测误差为0%时弹性模量和目标函数的收敛过程如图2和图3所示。
Fig.1 cross section of a concrete dam 表1
识别结果 Table
1
注:在奔腾133微机上计算时间为2~2.5h。
5.
结语 本文首先采用最优控制解的理论建立振动参数识别的优化模型,然后采用约束变尺度方法,由水坝原型实验数据来识别水坝坝体混凝土和基础岩石的弹性模量。数值试验时同时考虑了实际工程中一般只能有很少的振型数据,以及观测数据含有噪音的情况,结果表明,本文方法具有一定的抑制测量数据噪音的能力,利用宝贵的水坝原型实验观测数据,来确定大坝坝体和基础的弹性参数是可行的,可望为大坝动力计算提供有价值的参考数据。本文的方法也适用于一般结构的振动参数识别问题的求解。 参考文献 [1]顾冲时,蔡新,吴中如.探讨混凝土坝空间位移的正反分析模型[J].工程力学,1997,14(2):138-144. [2]刘迎曦,王登刚,张家良,等.材料物性参数识别的梯度正则化方法[J].计算力学学报,2000,17(1):69-75. [3]刘迎曦,王登刚,李守巨,等.混凝土重力坝弹性模量识别的一种新方法[J].大连理工大学学报,2000,40(2):144-147. [4]岳建平,华锡生.坝体综合模量反演中水位等因素的影响[J].河海大学学报,1994,22(1): 99-101. [5]于永德,王日松.脉动法测试建筑结构的动力学参数[J].武汉水运工程学院学报,1993,17(3):339-342. [6]丰满发电厂.大坝动力特性试验资料汇编[Z].吉林:丰满发电厂,1996. [7]刘丰年,李宏勇,刘明.一类有效的结构动态参数识别方法[J].地震工程与工程振动,1998,18(1):30-35. [8]汪晓虹,周传荣.平面珩架结构逆特征值问题的一个解法[J].应用力学学报,1998,15(2):119-122. [9]丁金华,腾弘飞.特征值反问题的逆摄动法及其在珩架结构中的应用[J].大连理工大学学报,1998,38(6):677-681. [10]王良深.混凝土坝地震动力分析[M].北京:地震出版社,1981. [11]黄光远,刘小军.数学物理反问题[M].济南:山东科技出版社,1993. [12]席少霖.非线性最优化方法[M].北京:高等教育出版社,1992. [13]余俊,周济,等.优化方法程序库OPB-2-原理及应用[M].武汉:华中理工大学出版社,1997. Study on identifying vibration parameters of concrete damWANG Deng-gang, LIU Ying-xi, LI Shou-ju (Dept.
of Eng. Mechanics, Dalian Univ. of Technol, Dalian 116024, China) Abstract:Based on the theory of optimal control solution, the parameters identification model was built to estimate the elastic material parameters of concrete dam according to the model data of dam prototype experiment. The priori-constrained information was considered in the present model. And the constrained variable metric algorithm was proposed to solve it. The present process was inspected through using the incomplete measuring data of the concrete gravity dam under the condition of empty reservoir. Numerical results show that the present method not only has high precision and good stability, but also has powerful capability to restrain noise of measurements. The elastic modulus of dam concrete and that of rock basement could be reliably identified only using the first order frequency and the first order vibration mode values at several fixed points in the dam. Consequently a new reliably approach to identify dynamic elastic modulus of dam concrete and that of rock basement. key words:vibration parameters;parameter identification;concrete gravity dam;constrained variable metric algorithm 基金项目:国家自然科学基金资助项目(59779003)。
本站收录的本文作者的其他论文: 1、A relialble approach to compute the forward kinematics of robot with uncertain geometric parameters |
欢迎您参加讨论,发表您对此论文及其研究领域的看法!
(请在发言时在标题中使用所点评的论文的题目或研究方向,这样方便大家浏览!)
返回首页 | CIMS论文 | 并行工程 | 虚拟制造 | 敏捷制造 | 其他论文 | 项目开发 | 学术资源 | 站内全文搜索 | 免费论文网站大全 |
为了更好的为大家服务,欢迎您参加本站的投票调查
>>>>参加更多投票调查请点击! |
本站永久域名:http://www.cimspaper.com欢迎访问
注意:本站内容未经书面允许不得转载